Энциклопедия оптика: авторефкератометры марки HUVITZ


Без диагностического кабинета с современным оборудованием и грамотного специалиста, проверяющего зрение и подбирающего очки, оптический салон - банальная торговая точка по продаже средств коррекции зрения. Среди всего многообразия диагностических приборов ведущее место по праву принадлежит авторефкератометру

HRK8000A-2.jpg

 

Для чего нужен авторефкератометр?

Десять лет назад пациент, заходящий в салон оптики, мог с порога озадачить спешащего к нему сотрудника вопросом: «Есть ли у вас компьютерная проверка зрения?», под чем, как правило, подразумевалось наличие в салоне авторефрактометра. Сегодня без «компьютерной» проверки зрения работа врача-офтальмолога или оптометриста немыслима. Авторефрактометр - не диковинка, а неотъемлемая часть любого оптического салона. Так что же он собой представляет и для чего нужен?

Авторефрактометр - это прибор, позволяющий получить объективные данные о рефракции пациента. То есть с помощью авторефрактометров проводят рефрактометрию глаза. Это анализ оптических свойств человеческого глаза в целях выяснения таких патологий, как гиперметропия, миопия или астигматизм.

Обучение консультантов в статье

Авторефкератометры используют для проведения кератометрии, включающей в себя анализ кривизны передней поверхности роговицы для своевременного выявления таких болезней глаз, как кератоконус, и при подборе и определении оптической силы контактных линз: они помогают оценить глаз под посадку линзы и рассчитать параметры линзы под конкретный глаз.

Авторефрактометр пришел на смену ручным рефрактометрам и кератометрам и позволяет быстро и точно в результате одного измерения получить максимум объективной информации о пациенте.

 

Субъективные и объективные методы определения рефракции

Существуют две основные группы методов определения рефракции: объективные и субъективные. Субъективные методы основаны на анализе ощущений пациента и уходят корнями в далекое прошлое. До изобретения набора пробных линз, предложенного немецким ученым Фронмюллером в 1843 году, готовые очки продавались бродячими торговцами. Подбор нужных очков проводили сами покупатели. Они выбирали с подноса торговца те, в которых было удобно смотреть вдаль или же читать. С появлением пробного набора торговцы готовыми очками стали консультировать покупателей, помогая им в подборе подходящих им линз. Решение о правильности и полноте коррекции зрения принималось на основании субъективных ощущений пациента. Сегодня для исследования субъективной рефракции глаза используются наборы пробных очковых линз и призм, пробные оправы и, конечно же, разнообразные таблицы с оптотипами.

Однако точный подбор коррекции с помощью одних только субъективных методов достаточно трудоемкий и не во всех случаях он возможен. Поэтому были предложены объективные методы исследования рефракции, при которых субъективные ощущения пациента не играют роли. К таким методам относятся ретиноскопия и авто­рефрактометрия.

Ретиноскопия, или скиаскопия, основана на наблюдении за движением тени в области зрачка при различных способах его освещения. При рефрактометрии анализируется отраженный от сетчатки инфракрасный пучок света, фокусировка которого зависит от вида и степени ре­фракции. Во время авторефрактометрии получение данных происходит автоматически с последующей математической обработкой.

Надо помнить, что обращение к объективным методам исследования рефракции является лишь начальным этапом в ее определении и подборе очков, после него обязательно должно быть еще и «субъективное» исследование. Только в исключительных случаях, когда последнее не может быть проведено, например при обследовании младенцев, маленьких детей или других пациентов, не способных к общению, результаты объективного исследования могут быть использованы для выписки рецепта.

 

История создания авторефкерактометра

Создание авторефкератометров имеет долгую историю, и изначально приборы были механическими и подразделялись на рефрактометры и кератометры. Первый механический рефрактометр был изобретен в 1908 году Де Зангом. Этот прибор эволюционировал в форопторы компании American Optical и ее же прибор Rx-Master. В свою очередь, рефрактометр Green Refractor компании Bausch + Lomb был создан на основе прибора, изобретенного в 1931 году Хюнсикером.1

Первый авторефрактометр для определения объективной рефракции был создан американским офтальмологом Араном Сафиром (Aran Safir) с коллегами, о чем в 1969 году им был сделан доклад «Автоматическая объективная рефракция» (Automatic objective refraction) на 74-м ежегодном заседании Американской академии офтальмологии и отоларингологии (American Academy of Ophthalmology and Otolaryngology) в Чикаго.

pic0.jpg

Измерения с применением первого авторе­фрак­тометра Ophthalmetron в 1974 году

Для работы на первых авторефрактометрах требовалось предварительное обучение офтальмологов, чтобы они могли полноценно использовать все возможности прибора. Так, регистрирующий авторефрактометр Ophthalmetron (Bausch + Lomb) выдавал ответ в виде кривой синусоиды, по которой исследующий вручную, с помощью специальной линейки, определял главные меридианы астигматического глаза и ре­фракцию в них.

Следующим прибором, получившим широкое распространение в 1970-е годы, был автоматический рефрактометр Dioptron фирмы Koherent Radiation, который был оснащен печатным устройством, выдававшим результаты измерений в виде рецепта на очки, где указывалась рефракция каждого глаза в традиционной транскрипции (сфера, цилиндр и ось) и расстояние между центрами линз.2 Разработчики, очевидно, полагали, что прибор заменит врача-офтальмолога или оптометриста, а такого рецепта будет достаточно для заказа очков.

Авторефрактометры первого поколения, такие как вышеназванный Diop­tron или 6600 Auto Refractot от компании Acuity Systems, имели высокую степень точности, но для измерения аметропии им требовалось около 1 мин. Второе поколение авторефрактометров было представлено компанией Huphrey Instruments. В этих приборах автоматическое определение аметропии было дополнено субъективным измерением остроты зрения при помощи корригирующих линз. Третье поколение автоматических рефракторов появилось в 1980-х годах в Японии и отличалось более быстрым временем измерения аметропии - менее 1 с - за счет изменения оптического принципа прибора. Быстрая система распознавания фиксировала четкое изображение на сетчатке и рассчитывала состояние рефракции. Авторефрактометр четвертого поколения был представлен совместно компаниями Marco и Nidek в 1983 году. Помимо автоматического определения рефракции компьютерная программа проводила оценку субъективной рефракции с использованием таких тестов, как затуманивание, красно-зеленый тест и тест с использованием кросс-цилиндров. Все автоматические рефрактометры имели три общие «черты»: источник инфракрасного (ИК) излучения для освещения глаза, компьютерную оптоэлектронную систему для анализа изображения и систему затуманивания для расслабления аккомодации.3

К последнему, пятому поколению приборов можно отнести авторефкератометры, проводящие измерение рефракции по методу анализа волнового фонта, например приборы HRK-7000, -7000А, -8000А компании Huvitz, которые позволяют получать исключительно точные данные рефрактометрии и кератометрии. Они оснащены специальным датчиком волнового фронта Хартмана-Шака, поточечно анализирующим волновой фронт отраженного от сетчатки света.

1 Grosvenor T. Primary Care Optometry. St. Louis (Miss.) : Butterworth-Heinemann, Else­vier, P. 2007.

2 Rio Grande Herald (Rio Grande City, Tex.). Vol. 32, N 22, Ed. 1. Thursday, March 21, 1974 (URL: http://texashistory.unt.edu/ark:/67531/metapth194451/m1/7/).

3 Weseman W., Rassow B. Automated Infrared Refractors - a Comparative Study / W. Weseman // American Journal of Optometry & Physiological Optics. 1987. Vol. 64, N 8. P. 627-638.

 

Компания Huvitz

Компания Huvitz была основана в Республике Корея в 1998 году. До 2002 года она называлась Mirae Optics Co., Ltd. В сегодняшнем названии компании отражена ее миссия: компания работает на благо человека, создавая инновационную медицинскую технику.

В 1999 году Huvitz выпустила свой первый авторефкератометр MRK-2000, получивший одобрение FDA. В 2001 году компанией был создан первый автоматический линзметр CLM-3000. В 2003 году она представила авторефкератометр MRK-3100P, быстро ставший очень популярным. Этот недорогой, но надежный прибор на протяжении последних десяти лет оставался самым востребованным в России. В 2004 году продукция Huvitz удостоилась сертификатов качества ISO 9001:2000, ISO 13485 и MDD.

Сегодня в России не найдется ни одного крупного специалиста в сфере оптического бизнеса, который не знал бы об офтальмологическом оборудовании этой южнокорейской компании. Врачи, оптометристы, мастера-оптики давно по достоинству оценили удобство и надежность корейской техники, которая часто не уступает своим японским аналогам в качестве и дизайне, оставаясь при этом гораздо доступнее их по стоимости.

В настоящее время в ассортименте продукции компании Huvitz представлены авторефкератометры HRK-7000, -7000A, -8000А, которые помогают быстро и точно провести рефрактометрию глаза с целью обнаружить такие патологии, как гиперметропия, миопия или астигматизм, выявить такие заболевания глаз, как кератоконус, катаракта, а также оценить состояние глаза относительно возможности подбора пациенту контактных линз и с тем чтобы рассчитать параметры линзы под конкретный глаз.

Преимуществом офтальмологического оборудования компании Huvitz является возможность объединения всех ее диагностических приборов в единую систему - авторефкератометр, диоптриметр, электронный фороптор, проектор знаков или экранный проектор могут управляться с одного пульта дистанционного управления. Это избавляет офтальмолога или оптометриста от ежедневной рутины и превращает процедуру подбора очков в быстрый и удобный процесс.

В России официальным дистрибьютором оборудования марки Huvitz является компания Stormoff group of companies.

 

Группа компаний Stormoff

Группа компаний Stormoff (Stormoff group of companies, далее - Stormoff) была основана в 1992 году и в настоящее время является крупнейшей торговой и производственной организацией на рынке медицинского оборудования России. Офтальмологический отдел Stormoff является одним из ведущих игроков на бурно растущем оптическом рынке. В его «арсенал» входит весь спектр диагностического оборудования - от офтальмоскопа и авторефкератометра до оптического когерентного томографа и электрофизиологических диагностических систем. Высококвалифицированные специалисты компании помогают клиентам при создании и переоснащении лечебного учреждения, оптического салона, оптометрического кабинета, ремонте находящейся в эксплуатации техники.

Основной принцип работы Stormoff направлен на формирование и поддержание длительных отношений с клиентами. Если покупатель обращается к услугам этой фирмы хотя бы однажды, то ее специалисты стараются оказывать поддержку его предприятию и в дальнейшем: предлагают оборудование для различных областей медицины на самых лучших условиях, обеспечивая его гарантийное и сервисное обслуживание, а также новые модификации техники, предоставляют информацию о международном рынке медицинского оборудования, реализуют различные финансовые схемы приобретения аппаратов и многое другое. Компания уделяет большое внимание качеству сервисного обслуживания: у нее есть сервисные центры в Москве и Санкт-Петербурге, в Сибири и на Урале, где имеется полный комплект запасных частей для ремонта оборудования. Все авторефкератометры продаются с 12-месячной гарантией и после первичной проверки.

 

Этапы развития

  • 1999
    – Выпуск первого авторефкератометра MRK-2000; прибор одобрен стандартом FDA.
  • 2000
    – Открыт собственный научно-исследовательский институт
    – Получение сертификата соответствия ISO 9002, TUV (Technischer Uberwachungs-verien) - рейтинг надежности Немецкого объединения технадзора
    – Открыт офис в Пекине (КНР).
  • 2001
    –Выпуск первого автоматического диоптриметра CLM-3000.
    – Выпуск первого тестера CDC-3000 для проверки остроты зрения с расстояния 1,1 м.
    – Получение сертификата соответствия EN 46002 (Германия).
    – Получение знака «СЕ» на авторефкератометр, диоптриметр и тестер для проверки остроты зрения.
    – Достижение экспортного оборота объемом 5 млн долл. США.
  • 2002
    – Изменение названия компании на Huvitz Co. Ltd. (вместо изначального Mirae Optics Co.).
    – Внедрение в производство моделей улучшенного качества: авторефкератометра MRK-3100 Premium и диоптриметра CLM-3100 Premium.
    – Признание правительством Южной Кореи как компании, производящей лучший в стране продукт.
  • 2003
    – Запуск новых производственных мощностей в городе Гун-По.
    – Получение знака «UL» от независимой экспертной компании в подтверждение надежности, безопасности и качества выпускаемой продукции.
  • 2004
    – Обновление сертификата соответствия ISO 9001, ISO 13485 и получение сертификата соответствия MDD (Medical Device Directive).
  • 2006
    – Выпуск станка для бесшаблонной обработки линз Excelon.
  • 2008
    – Внедрение в производство новых моделей авторефкератометра HRK-7000, HRK-7000A, фороптора HDR-7000, автоматического диоптриметра HLM-7000.
    – Выпуск автоматического центратора со встроенным сканером и диоптриметром САВ-400.
    – Открытие подразделения Shanghai Huvitz Co., Ltd. в Шанхае (КНР).
  • 2009
    – Начало серийного выпуска щелевых ламп HS-5000 и HS-5500 (с фото- и видеокамерой) с программным обеспечением для подключения к персональному компьютеру.
  • 2010
    – Выпуск нового станка для бесшаблонной обработки линз Excelon XD с функцией сверления.
    – Выпуск щелевых ламп высокого разрешения HS-7000 и HS-7500.
    – Выпуск бесконтактного тонометра HNT-7000.
    – Выпуск полуавтоматического блокера HBK-7000.
    – Выпуск новых таблиц и проекторов знаков для проверки остроты зрения HDC-7000 (N, PF).
    – Выпуск нового рабочего места офтальмолога HRT-7000.
  • 2011
    Появление на российском рынке  щелевых ламп  и пневмотономет­ров и авторефкератометра HRK-8000А
  • 2013
    Запуск производства хирургических микроскопов серии HSZ-600.

IMG_0710.jpg

Завод компании Huvitz в Аньянге, пригороде Сеула (Южная Корея) 

DSCF8651.jpg

Цех по производству авторефкератометров 

DSCF8680.jpg

Оптический салон в Сеуле 

 

Проведение измерений на авторефрактометре

Процедура проведения измерений на этом приборе предельно проста и не требует много времени. Пациент усаживается перед прибором в необходимом положении и кладет голову на на упоры для подбородка и лба так, чтобы голова была неподвижной. Затем он фиксирует свой взгляд на мишени внутри аппарата (при этом может моргать как обычно). Исследующий располагает мишень по центру зрачка пациента и наводит фокус. После этого измерение может быть выполнено автоматически или вручную - в зависимости от установленного режима измерения. Далее выполняется серия измерений, результаты которых усредняются. Затем та же процедура повторяется для второго глаза, и полученные результаты исследования могут быть распечатаны.

izmereniya.jpg

У большинства авторефрактометров и авторефкератометров промежуточные результаты измерений выводятся на экран прибора. Окончательный результат выдается в виде распечатки результатов всех проведенных исследований, а также усредненного результата в привычном виде «сфера - цилиндр - ось» с указанием межзрачкового расстояния. При этом в одних приборах в распечатке присутствует показатель достоверности результата, который может иметь цифровое выражение или обозначаться звездочкой, в других при вычислении средней величины недостоверные результаты не учитываются, а в третьих при этом учитываются все полученные показатели.

Современные аппараты способны не только измерять клиническую рефракцию глаза - с их помощью можно также оценивать рефракцию роговицы, ее радиус, диаметр. Эти данные незаменимы при подборе контактных линз, уточнении вида астигматизма (роговичный, хрусталиковый).

Хотя и при измерении на авторефрактометре возможны погрешности, все равно этот метод определения объективной рефракции является самым удобным и быстрым. Результаты такой диагностики могут интерпретироваться только профессионалом, однако они однозначно служат некой точкой отсчета для будущих исследований, в частности для проверки остроты зрения и подбора оптимального средства оптической коррекции - очковых или контактных линз.

Такие состояния, как синдром «сухого глаза» и неровная поверхность роговицы, могут затруднить получение данных при обследовании на авторефкератометре. Проведение авторефрактометрии также затруднено при непрозрачных оптических средах глаз, нарушающих прохождение тестовых пучков света к сетчатке и обратно. Это может быть следствием помутнения хрусталика, роговицы или стекловидного тела.

 

Расшифровка образца распечатки измерений на авторефрактометре Huvitz HRK-8000А

rashifrovka.jpg

1 - результаты рефрактометрии; 

2 - правый глаз;

3 - левый глаз;

4 - оптическая сила сферической линзы, дптр, соответствующая рефракции глаза в одном из двух главных меридианов глаза;

5 - результаты измерения радиуса кривизны роговицы в максимальном и минимальном ее меридианах, выраженные в миллиметрах;

6 - результаты измерений в максимальном и минимальном меридианах роговицы;

7 - межзрачковое расстояние, мм;

8 - вертексное расстояние, мм;

9 - вид цилиндров (минусовые);

10 - оптическая сила цилиндрической линзы, добавление которой к сферической линзе с оптической силой, соответствующей одному из двух главных меридианов данного глаза, отображает рефракцию глаза в другом главном меридиане; обычно в настройках авторефрактометров предустановлены отрицательные (минусовые) цилиндры;

11 - ось цилиндрической линзы, град. (см.  поз.10);

12 - средний показатель измерения ре­фракции в двух главных меридианах глаза, выраженный в виде рецепта на очки;

13 - результаты кератометрии;

14 - средний показатель полученных измерений радиуса кривизны роговицы, мм, и рефракционной силы, дптр, в ее минимальном и максимальном меридианах;

15 - результаты измерения рефракции роговицы, дптр, в ее минимальном и максимальном меридианах.

 

Принцип работы стандартных авторефкератометров

Большинство авторефкератометров работают по принципу анализа излучения инфракрасного (ИК) света. Свет дважды проходит через глаз: при входе в глаз и при выходе из него. Электронные сенсоры регистрируют изображение этого пучка. Параметры луча анализируются с помощью специальных компьютерных программ, и в результате выдается значение рефракции. В разных приборах применяются различные оптические принципы.

prinsip01.jpg

Стандартный авторефкератометр:
1
– зеркало; 2 – первая линза; 3 – зеркало с отверстиями; 4 – диафрагма; 5 – свето­диод; 6 – измерительная диафрагма; 7 – призма; 8 – ПЗС-матрица; 9 – объектив камеры

prinsip02.jpg

 

Расчет параметров рефракции (Sph, Cyl, Ax) стандартным авторефрактометром 

Стандартный авторефкератометр делает измерения в шести точках центра зрачка, проводя затем анализ отраженного от сетчатки ИК-света и рассчитывая такие параметры, как сфера, цилиндр и ось цилиндра, на основе данных в двух основных меридианах. При использовании стандартных приборов измерение рефракционных ошибок глаза сводится к получению информации от одной точки, а аберрации высоких порядков не учитываются, нет также данных об объемной разрешающей способности.

Авторефрактометры самого последнего поколения работают на основе принципа анализа волнового фронта (волновая аберрометрия). С помощью таких устройств можно измерить, записать, проанализировать и вывести на дисплей все аберрации глаза, в том числе аберрации высоких порядков.

 

Аберрации глаза

«Аберрация - это любое угловое отклонение узкого параллельного пучка света от точки идеального пересечения с сетчаткой в центре фовеолы при его прохождении через  всю оптическую систему глаза.»

aberracii01.jpg

Волновой фронт при прохождении через идеальную и неидеальную оптическую систему:
идеальная (вверху) и реальная (внизу) картина преломления в приближении гео­метрической оптики 

Для описания рефракции и подбора коррекции традиционно используют такие параметры, как сфера, цилиндр и ось цилиндра, а измерение рефракционных ошибок глаза сводилось к получению информации из одной точки. Развитие науки позволило определять аберрации высоких порядков и их распределение, а современные технологии позволили учитывать их при подборе коррекции и формировании дизайна очковых линз.

Человеческий глаз, как и любая «неидеальная» оптическая система, имеет оптические дефекты - аберрации, которые снижают качество зрения, искажая изображение на сетчатке. Аберрация - это любое угловое отклонение узкого параллельного пучка света от точки идеального пересечения с сетчаткой в центре фовеолы при его прохождении через всю оптическую систему глаза.1

aberracii02.jpg

Форма волнового фронта в зависимости от вида аметропии:
1 – плоский волновой фронт; 2 – сходящийся волновой фронт; 3 – расходящийся волновой фронт 

В технической оптике качество оптической системы определяется аберрациями плоского или сферического фронта световой волны при прохождении через эту систему. В офтальмологической оптике волновой фронт - это форма оптической поверхности, включающей в себя все аберрации глаза. Волновой фронт у каждого человека так же уникален, как его отпечаток пальца.

Глаз без аберраций имеет плоский волновой фронт и дает на сетчатке наиболее полноценное изображение точечного источника. Но в реальности даже при высокой остроте зрения оптические дефекты преломляющих свет поверхностей глаза искажают ход лучей и формируют неправильный волновой фронт, в результате чего изображение на сетчатке получается более крупным и асимметричным. Основным источником сферической аберрации в глазу является хрусталик, во вторую очередь - роговица. Чем шире зрачок, то есть чем большая часть хрусталика принимает участие в зрительном акте, тем более заметна сферическая аберрация.

aberracii03.jpg

Полиномы Цернике 

Математический метод описания дефектов изображений или аберраций оптических систем в виде серии полиномов предложил голландский физик Фриц Цернике (1888-1966). Полином - это многочлен, алгебраическое выражение, представляющее собой сумму или разность нескольких одночленов. Полиномы первого и второго, то есть низших, порядков описывают привычные для офтальмологов оптические аберрации - дефокусировку (аметропии), астигматизм. Полином третьего порядка соответствуют коме - сферической аберрации косых пучков света, падающих под углом к оптической оси глаза. К аберрациям четвертого порядка относится сферическая аберрация, которая в основном обусловлена тем, что периферия хрусталика преломляет падающие на нее параллельные лучи сильнее центра.

Полихроматическая природа света обуславливает появление хроматических аберраций, когда лучи разной длины волны фокусируются на разном расстоянии от сетчатки (коротковолновые - ближе к роговице, чем длинноволновые).

1 При написании данного раздела использован материал статьи: Егорова Г. Б., Бородина Н. В., Бубнова И. А. Аберрации человеческого глаза, способы их измерения и коррекции (обзор литературы) // РМЖ [Сайт]. URL: http://rmj.ru/articles_4917.htm (дата обращения: 07.02.2014).

 

Датчик Хартмана-Шака

Первый анализатор волнового фронта был разработан в 1900 году немецким астрономом Францем Йоханнесом Хартманом в виде металлического экрана с отверстиями для разделения и изучения световых лучей. B 1971 году Рональд Шак модифицировал экран Хартмана, использовав систему элементарных линз. Устройство получило название датчика Хартмана-Шака.1

Первое практическое применение технология волнового фронта нашла в астрономии - при создании лазеров с адаптивной оптикой для компенсации аберраций, вызванных турбулентными явлениями в атмосфере. Идея использования технологии волнового фронта в офтальмологии принадлежит доктору Джозефу Биллю и впервые была озвучена на конгрессе Ассоциации исследователей в области зрения и офтальмологии (Association for Research in Vision and Ophthalmology - ARVO) в 1982 году в США. В 1988-1994 годах в Институте физики Гейдельбергского университета под руководством доктора Билля технология волнового фронта с использованием аберрометра Хартмана-Шака была применена для диагностики зрительных аберраций путем анализа световой волны, отраженной от сетчатки при попадании на нее света от точечного источника. При вычислении отклонений полученных данных от идеальной световой волны формировали высокоточные показатели рефракционной топографии оптической системы.

В 1997 году доктор Вильямс и доктор Льянг, работавшие в Рочестерском университете (США), применили технологию волнового фронта для коррекции аберраций высоких порядков глаза человека, впервые использовав зеркало с управляемой отражающей поверхностью. В том же  году прототип анализатора волнового фронта был модернизирован, и системы для рефракционной хирургии на его основе были выпущены в 1997-2000 годах компаниями Alcon (Ladarwave, Ladarvision), Bausch + Lomb (Zyoptic) и Visx (Wavescan, Star S3).

registraciya01.jpg

Датчик Хартмана–Шака
Массив линз детекторов ловит сигнал в определенном количестве точек

1 При написании данного раздела использован информационный материал: Технология волнового фронта пришла в офтальмологию из астрономии // Общество офтальмологов России [Сайт]. URL: http://www.oor.ru/spc/?nopht_5 (дата обращения: 07.02.2014).

 

Регистрация аберраций волнового фронта авторефкератометрами компании Huvitz

В авторефкератометрах HRK-7000, -7000A и -8000А компании Huvitz применяется уникальный модифицированный датчик Хартмана-Шака - сенсор волнового фронта, позволяющий получить характеристику роговицы глаза для лечения сложных аномалий рефракции. Принцип измерения основан на многоволновой интерферометрии. Датчик состоит из массива линз, притом что у всех одинаковое фокусное расстояние. Каждая из линз в фокусе имеет ячейку ПЗС-матрицы, которая является сенсором фотонов. Локальный угол наклона для каждой такой ячейки определяется из позиции сфокусированной точки на сенсоре. Чем больше этих углов и сенсоров, тем более точным является метод.

registraciya0.jpg

Зоны измерений:
а
– на стандартном авторефкератометре; б – на авторефкератометре с датчиком волнового фронта

Измерения на авторефкератометре HRK-7000 проводятся в 4-миллиметровой зоне с последующим анализом отраженного света по 25 точкам.

registraciya02.jpg

Принципиальная схема авторефкератометра HRK-7000 с функцией анализа волнового фронта:
1 – светодиод; 2, 5 – линза; 3 – зеркало; 4 – оптический светоделитель; 6 – микролинзовая матрица

registraciya03.jpg

Принципиальная схема авторефкератометра HRK-8000А с функцией анализа волнового фронта:
1 – светодиод; 2 – коллимационная линза; 3 – диффузор; 4 – поляризационное зеркало; 5 – зеркало; 6 – зеркало кератометра; 7 – мира; 8 – глаз; 9 – зеркало кератометра; 10 – зеркало оптометрической таблицы; 11 – зеркало; 12 – цветная линза; 13 – цветная ПЗС-матрица; 14 – таблица; 15 – светодиод таблицы; 16 – линза; 17 – ПЗС-матрица кератометра; 18 – светоделитель; 19 – высокодиоптрийная линза; 20 – поляризационное зеркало; 21 – микролинзовая матрица; 22 – опорная ПЗС-матрица 

Измерения на авторефкератометре HRK-8000А осуществляют в зависимости от выбранного режима в зрачковой зоне диаметром 3,0 или 4,6 мм с проведением анализа отраженного света по 49 и 81 точкам соответственно.

 

Функции авторефкератометров HRK-7000, -7000А и -8000А

Авторефкератометры HRK-7000, -7000А, -8000А работают по принципу анализа волнового фронта и оснащены модифицированным датчиком Хартмана-Шака. Они позволяют проанализировать аберрации оптической системы глаза и подобрать оптимальную коррекцию.

Предусмотрены следующие режимы измерений:

? REF - рефрактометрия; есть специальный режим измерения остроты зрения пациентов с ИОЛ или катарактой.

? K/R - непрерывная одновременная кератометрия и рефрактометрия: позволяет быстро и точно провести измерение объективной рефракции без применения циклоплегических средств.

? KER-P - периферическая кератометрия: проводит измерение радиуса роговицы и ее преломляющей силы не только по центру, но и в пяти периферических точках, что позволяет построить кератотопограмму и выявить нерегулярный астигматизм, кератоконус и другие аномалии роговицы.

? КER - центральная, назальная, темпоральная кератометрия (в направлениях на 12 часов и на 6 часов): помогает при подборе контактных линз и оценке их посадки.

? Ret. ILLUM - ретроиллюминационное обследование: позволяет исследовать глаз в проходящем свете и диагностировать помутнения в роговице, хрусталике и стекловидном теле.

? Z-MAP - отображение на экране карт аберраций для каждого глаза в отдельности: графическое отображение карты волнового фронта и ошибок рефракции позволяет лучше понять состояние глаз пациента и достоверность проведенной при измерении оценки. Демонстрация аберрометрической картины глаза и фотографий его переднего отрезка помогает специалистам в области коррекции зрения наглядно и просто объяснить пациенту имеющиеся у него проблемы и рекомендовать наиболее оптимальную коррекцию. Можно продемонстрировать рубцы роговицы, новообразовавшиеся сосуды, сохранить информацию в виде фотографий и отслеживать динамику изменений.

? CLBS - измерение базовой кривизны роговицы для подбора контактных линз.

Приборы осуществляют:

  •  автоматическое измерение межзрачкового расстояния;
  •  мгновенное автоматическое измерение объективной рефракции: сферы, цилиндра, оси цилиндра, парамет­ров роговицы в центре и на периферии;
  •  формирование карт волнового фронта и выдачу всех данных в виде распечатки на встроенном принтере;
  •  моторизованное трехмерное автоматическое наведение и фокусировку;
  •  определение базовой кривизны роговицы для подбора контактных линз;
  •  измерение диаметра зрачка, роговицы или радужки в режиме стоп-кадра.

Для всех авторефрактометров характерны:

  •  технология подавления шума, обеспечивающая точность результатов при определении аметропии, проведении измерений у пациентов с ИОЛ или катарактой;
  •  простота настройки;
  •  удобный и понятный интерфейс, позволяющий пользователю легко установить нужную функцию и изменить настройки без выхода с текущей страницы;
  •  удобная блокировка (можно зафиксировать прибор при помощи одного-единственного нажатия на кнопку);
  •  эргономичный дизайн, обеспечивающий удобство обследования как врачу, так и пациенту.

Все приборы могут функционировать в составе ре­фракционной диагностической системы компании Huvitz, включающей в себя рабочее место офтальмолога/оптометриста, авторефкератометр, проектор знаков, цифровой фороптор, линзметр с единым блоком управления и персональный компьютер, на котором сохраняются данные. Также авторефрактометры могут работать и с внешним монитором - для более наглядного отображения результатов измерения.

Отличительные особенности HRK-7000A и HRK-8000A по сравнению с HRK-7000

HRK-7000A имеет функцию трехмерного автоматического наведения на глаз с последующим автоматическим воздушным «выстрелом», что обеспечивает быстроту, точность измерений и удобство в работе. Также в нем, в отличие от предшественника, предусмотрена электрическая регулировка подбородника.

В модели HRK-8000A применен уникальный алгоритм более полного анализа волнового фронта и, в отличие от авторефкератометра HRK-7000A, он рассчитывает и аберрации более высокого порядка. При работе в режиме отображения полиномов Цернике прибор рассчитывает и демонстрирует аберрации глаза вплоть до 4-го порядка.

Особенности HRK-8000A:

  •  оптимизированная оптическая система;
  •  анализ аберрации высших порядков;
  •  измерение кератометрии по периферии;
  •  максимально точные данные кератометрии;
  •  цветной режим формирования изображений;
  •  микролинзовый датчик Хартмана-Шака с проведение измерений по 81 точкам;
  •  функция помощи при подборе контактных линз;
  •  рекомендации по подбору контактных линз;
  •  наклонный сенсорный монитор;
  •  это самый быстрый прибор среди авторефкерато­метров;
  •  бесшумный принтер с автоотрезом бумаги;
  •  электрическая регулировка подбородника;
  •  система анимационных подсказок;
  •  автотрекинг.

Авторефкерактометры прошли в своем развитии огромный путь, эволюционировав от первых медленных и сложных в эксплуатации образцов до многофункциональных высокоточных приборов. Блестящим примером этих умных приборов являются авторефкератометры компании Huvitz, которые помогают быстро и точно определить объективную рефракцию, диагностировать заболевания глаз, облегчают подбор контактных линз и оценку их посадки. Благодаря наличию датчика Хартмана–Шака они могут проводить анализ волнового фронта и выявлять аберрации высокого порядка для более точного подбора средств коррекции зрения, и что важно, по стоимости эти сложные приборы соответствуют ценовому уровню стандартных авто­рефкератометров.